
Model evaluation and analysis: the modEvA R package in a
nutshell

A. Márcia Barbosa, CIBIO/InBIO - University of Évora (Portugal), barbosa@uevora.pt

updated 5 Mar 2015

The modEvA package works within the free and open-source R statistical software, so you
first need to download, install and open R (available at http://www.r-project.org). In this
tutorial, in monospaced font are the commands that you need to type (or copy and paste) into
the R console (and then press the enter key to execute them). For commands that generate
visible results in R, these are usually shown below them, preceded by hash marks (##). Note
that all commands are case-sensitive, so you must respect upper- and lower-case letters;
that you must always use straight (', ") rather than curly quotes and apostrophes; and
that R is only ready to receive a new command when there's a prompt sign (>) at the
end of the R console; if not, it's still waiting for an operation to be finished or for you to
complete a previous command -- watch out for unclosed parentheses or such.

Install modEvA by pasting the command below in the R console (when connected to the
internet):

install.packages("modEvA", repos = "http://R-Forge.R-project.org")

This should work if you have the latest version of R; otherwise, it may either fail (producing
a message like "package 'modEvA' is not available for your R version") or show a warning and
install an older version of modEvA. To check the version that you have actually installed,
type citation(package="modEvA"). To install the latest version of the package, you can either
upgrade R or download the compressed modEvA package source files to your disk -- .zip for
Windows or .tar.gz for Linux and Mac, available at the package development page or at this
Dropbox folder and then install the package locally, e.g. with R menu "Packages - Install
packages from local zip files" (Windows), or "Packages & Data - Package installer, Packages
repository - Local source package" (Mac), or "Tools - Install packages - Install from: Package
Archive File" (RStudio).

You only need to install the package once (unless a new version becomes available), but you
need to load it every time you open a new R session in which you intend to use modEvA (no
need for an internet connection anymore), by pasting the following command in R:

library(modEvA)

Load the rotif.mods sample dataset that comes with the modEvA package, to use as an
example:

data(rotif.mods)

You can get more information on this dataset (the following command should open an R
Documentation window):

mailto:barbosa@uevora.pt
http://www.r-project.org/
https://r-forge.r-project.org/R/?group_id=1876
https://www.dropbox.com/sh/oac92wu1dbfsol4/AAAKVs4oVBBCUtDkPTnbh11Ga?dl=0
https://www.dropbox.com/sh/oac92wu1dbfsol4/AAAKVs4oVBBCUtDkPTnbh11Ga?dl=0

help(rotif.mods)

You can see that rotif.mods is a list containing two elements: a list of generalized linear models
and a dataframe with their predictions. Let's leave the predictions alone for now, and work on
the model objects. Let's start by checking out their names:

names(rotif.mods$models)

[1] "Abrigh" "Afissa" "Apriod" "Bangul" "Bcalyc" "Bplica" "Bquadr"
[8] "Burceo" "Cgibba" "Edilat" "Flongi" "Kcochl" "Kquadr" "Ktropi"
[15] "Lbulla" "Lclost" "Lhamat" "Lluna" "Llunar" "Lovali" "Lpatel"
[22] "Lquadr" "Mventr" "Ppatul" "Pquadr" "Pvulga" "Specti" "Tpatin"
[29] "Tsimil" "Ttetra"

These names correspond to species abbreviations, and each object in this list is a generalized
linear model of the presence-absence of the corresponding species. Now let's assign the first
model to an individual object, and use it to try out modEvA functions. The following two
commands should produce the same result, as "Abrigh" is the name of the 1st model in the
rotif.mods$models list:

mod <- rotif.mods$models[[1]]
mod <- rotif.mods$models[["Abrigh"]]

Let's now try the modEvA functions on this model (or you can use any other generalized linear
model that you may have). Let's start with plotGLM, which shows how observed (grey)
and predicted (black) values vary along the regression equation:

plotGLM(model = mod, xlab = "Logit (Y)", ylab = "Predicted probability", main =
"Model plot")

Now calculate the area under the ROC curve (AUC) for this model. This function produces a
plot and also some text results, which will appear in your R console but will not be shown
here:

AUC(model = mod)

Calculate some threshold-based evaluation measures for this model, using the species'
prevalence (proportion of presences) as the threshold value above which to consider that the
model predicts the species to be present (again, only the plot is shown here, but text results
should appear in your R console):

par(mar = c(5.6, 4.1, 2, 2.1))
threshMeasures(model = mod, thresh = "preval", ylim = c(0, 1), main =
"Threshold measures")

Now see how each threshold-based measure varies along with the chosen prediction
threshold, to maybe identify optimal thresholds according to particular criteria:

optiThresh(model = mod, pch = 20)

You can also calculate the optimal threshold balancing two complementary evaluation
measures:

optiPair(model = mod, measures = c("Sensitivity", "Specificity"), main =
"Optimal balance")

(You can try this with other pairs of related measures, such as c("Omission",
"Commission"), c("PPI", "PAI"), etc.).

Now let's assess the proportion of variation that the model accounts for. For GLMs there
isn't a single consensual measure for this; modEvA can calculate the explained deviance (D-
squared), optionally adjusted for the number of observations and parameters; and some
pseudo R-squared values (see help(Dsquared)and help(RsqGLM) for further info):

Dsquared(model = mod)

[1] 0.1114199

Dsquared(model = mod, adj = TRUE)

[1] 0.09264705

RsqGLM(model = mod)

$CoxSnell
[1] 0.1380008

$Nagelkerke
[1] 0.187434

$McFadden
[1] 0.1114199

$Tjur
[1] 0.1365661

$sqPearson
[1] 0.134168

You can visualise these R-squared measures with the barplot R function:

barplot(unlist(RsqGLM(model = mod)), ylim = c(0, 1), las = 2, main = "R-squared
values")

We can also take a look at some model calibration measures, such as Miller's calibration
statistics and the Hosmer-Lemeshow goodness-of-fit. Note, however, that the former is not
useful for evaluating a model on the same data used for building it (the results will always
look good); and that the latter depends strongly on the bin.method used for grouping the
values, as you can see below. See help(MillerCalib) and help(HLfit) to find out how these
measures are calculated.

MillerCalib(model = mod)

$intercept
[1] 1.799596e-13

$slope
[1] 1

HLfit(model = mod, bin.method = "quantiles", main = "Hosmer-Lemeshow GOF,
quantiles")

$bins.table
BinCenter NBin BinObs BinPred BinObsCIlower BinObsCIupper

1 0.1194811 29 0.03448276 0.1016246 0.0008726469 0.1776443
2 0.1819756 29 0.31034483 0.1789304 0.1528459396 0.5083234
3 0.2482370 29 0.17241379 0.2445406 0.0584560830 0.3577476
4 0.3084812 29 0.31034483 0.3091572 0.1528459396 0.5083234
5 0.3618102 29 0.44827586 0.3607436 0.2644553037 0.6430613
6 0.3927488 29 0.41379310 0.3942488 0.2352402098 0.6106372
7 0.4383741 29 0.37931034 0.4372018 0.2068686995 0.5773954
8 0.5130304 29 0.48275862 0.5063462 0.2944855830 0.6746850
9 0.5960986 29 0.58620690 0.5910230 0.3893627914 0.7647598
10 0.6933976 29 0.68965517 0.7070658 0.4916766462 0.8471541
11 0.9044237 1 1.00000000 0.9044237 0.0250000000 1.0000000

$chi.sq
[1] 7.278077

$DF
[1] 9

$p.value
[1] 0.6081922

HLfit(model = mod, bin.method = "n.bins", main = "Hosmer-Lemeshow GOF, N bins")

$bins.table
BinCenter NBin BinObs BinPred BinObsCIlower
(0.026,0.115] 0.05859488 13 0.0000000 0.06339589 0.00000000
(0.115,0.202] 0.15753130 41 0.1951220 0.15789124 0.08820610
(0.202,0.29] 0.24856387 39 0.2051282 0.24747539 0.09296393
(0.29,0.378] 0.34035838 51 0.4117647 0.33974064 0.27584296
(0.378,0.466] 0.41206526 59 0.3898305 0.41510104 0.26549147
(0.466,0.553] 0.51322862 30 0.4666667 0.50772771 0.28341808

(0.553,0.641] 0.60663508 34 0.5882353 0.60041852 0.40696943
(0.641,0.729] 0.66899210 12 0.6666667 0.67465548 0.34887551
(0.729,0.817] 0.78101033 9 0.7777778 0.77077823 0.39990643
(0.817,0.905] 0.83199370 3 1.0000000 0.85136910 0.29240177
BinObsCIupper
(0.026,0.115] 0.2470526
(0.115,0.202] 0.3486655
(0.202,0.29] 0.3646442
(0.29,0.378] 0.5583072
(0.378,0.466] 0.5256215
(0.466,0.553] 0.6567448
(0.553,0.641] 0.7535293
(0.641,0.729] 0.9007539
(0.729,0.817] 0.9718550
(0.817,0.905] 1.0000000

$chi.sq
[1] 3.770615

$DF
[1] 8

$p.value
[1] 0.8772036

You can calulate a set of evaluation measures for several models simultaneously, if you
have them in a list like rotif.mods$models (results not shown here):

multModEv(models = rotif.mods$models, thresh = "preval", bin.method =
"quantiles")

Most of the modEvA functions also have obs and pred arguments, so instead of model objects
you can use vectors of observed and predicted values as input. You can find out additional
options and further info on any function with help(function.name).

Some other potentially useful modEvA functions are (still) not covered in this tutorial, but you
can find out about them as well:

help(evenness)
help(prevalence)
help(OA)
help(MESS)
help(varPart)

That's it! E-mail me with any suggestions or concerns, but first remember to check for
updates to the package or this tutorial at http://modEvA.r-forge.r-project.org. This tutorial
was built with RStudio + rmarkdown + knitr. Thanks!

http://modeva.r-forge.r-project.org/

